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Abstract. The Tunka Radio Extension (Tunka-Rex) is an antenna array spread over an area
of about 1 km2. The array is placed at the Tunka Advanced Instrument for cosmic rays and
Gamma Astronomy (TAIGA) and detects the radio emission of air showers in the band of 30
to 80 MHz. During the last years it was shown that a sparse array such as Tunka-Rex is
capable of reconstructing the parameters of the primary particle as accurate as the modern
instruments. Based on these results we continue developing our data analysis. Our next goal is
the reconstruction of cosmic-ray energy spectrum observed only by a radio instrument. Taking
a step towards it, we develop a model of aperture of our instrument and test it against hybrid
TAIGA observations and Monte-Carlo simulations. In the present work we give an overview
of the current status and results for the last five years of operation of Tunka-Rex and discuss
prospects of the cosmic-ray energy estimation with sparse radio arrays.

1. Introduction
Digital radio antenna arrays are a rapidly developing instrument for observation and study
of ultra-high energy messengers in PeV-EeV range [1, 2]. Radio detection has evolved from
understanding signal formation and early hardware development to the stage of real physical
measurements.

Tunka-Rex is a radio antenna array designed for detecting cosmic rays. It is located at the
site of the TAIGA detector [3] at the Tunka valley in Russia. The Tunka-Rex detector has been
operating since 2012. It has been extended several times and currently consists of 57 antennas
in the dense core of the detector (about 1 km2 area) and 6 antennas in the satellite clusters
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Figure 1. Left: one of the clusters of Tunka-Rex. Three generations of the antennas are
marked in the picture along with the Tunka-Grande and Tunka-133 detectors. The black lines
schematically represent the cabling. Right: map of the present footprint of the detectors of
TAIGA.

used as a high-energy extension. In total the Tunka-Rex radio array covers about 3 km2. As
antenna type we use SALLA [4] operating in the band of 30–80 MHz. The present configuration
of Tunka-Rex detector is shown in the Fig. 1.

2. Highlights of Recent Results
Some important updates of the analysis have been done in Tunka-Rex. Recently we developed
a method of template analysis of the data. Essentials of this method are the following:

• Pre-reconstruction using the standard procedure of Tunka-Rex [5]. This stage provides the
shower incoming direction, the core position, and the energy estimation.

• Creating a library of CoREAS simulations [6] for each event obtained in the previous step
with the goal to cover all possible depths of the shower maxima.

• Least-square fit of the simulated signal envelops to the reconstructed ones. The shower
maximum and primary-particle energy are reconstructed on this stage.

Results of applying this method to the data are shown in the Fig. 2, left [7].
To better understand atmospheric impact we compared the predictions of the refractivity

given by the standard CORSIKA atmosphere and the values given by GDAS [9]. The results of
this comparison are displayed in the Fig. 2, right.

Also, mainly due to the worsening of the radio noise environment on the site some important
updates have been introduced in the signal processing chain [10]:

• Matched filtering and background suppression with convolutional neural networks [11, 12].

• A sliding window for noise estimation was introduced to make the noise estimation procedure
more robust against RFI.

Tunka-Rex has resolution of the Xmax reconstruction about 30 g/cm2. The resolution of
the energy reconstruction is approximately 10% with systematic uncertainties of the instrument
absolute calibration of about 20%.

3. Aperture and Exposure Estimation
The estimation of the instrument exposure is a key component for the correct reconstruction of
the cosmic-ray flux measured by the observatory.
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Figure 2. Left: Mean shower maximum as function of primary energy reconstructed by different
experiments measuring the electromagnetic component of air showers [7]. Right: difference
between the refractivity at the CORSIKA [8] standard atmosphere and the one calculated with
GDAS profiles for the Tunka location.

The general way to estimate the flux J as a function of energy of the primary particle E is
the following [13]:

J(E) =
d4N

dE ds dΩ dt
≈ ∆Nsel(E)

∆E

1

ε(E)
, (1)

where N is the number of primaries with energy between E and E + dE passing through a
surface element ds within a solid angle dΩ and within time dt. ∆Nsel(E) is the number of
events passing the selection criteria in a given analysis in the energy bin centered in E and
having a width ∆E. ε(E) is the energy-dependent exposure.

The exposure can be expressed in the form of the integral of the detection efficiency ξ:

ε(E) =

∫
Tsel

∫
Ωsel

∫
Ssel

ξ (E, t, ϑ, ϕ, x, y) cosϑ dsdΩ dt =

∫
T

A(E, t) dt, (2)

with dΩ = sinϑ dϑ dϕ and ds = dx dy. After partial integration one obtains the value A, which
is called instant aperture. The detection efficiency depends strongly on energy, direction, and
shower core location as well as on observation time due to instrumental instability over time.

The idea is to use of the full efficiency regime and fiducial selection of area and angular
coverage of the sky. Using this regime of full efficiency is the most reliable way to estimate the
cosmic-ray flux since instrumental effects of changing the observed mass composition near the
detection threshold do not influence the final results. In this case the aperture in the equation (2)
can be factorized in the following way

ε(E) =

∫
T

S(E, t)AΩ(E, t) dt, (3)

where S(E, t), AΩ(E, t) are the fiducial area of the instrument and the angular part of the
aperture with fiducial selection of the viewing angle. Full efficiency means that the detection
efficiency is equal to one, and is omitted hereafter. In the simplest case of stable operation the
equation (3) can be simplified

ε(E) = S(E)AΩ(E)T, (4)



where T is the observation time at full efficiency.
In comparison to particle and non-imaging air-Cherenkov detectors, the full efficiency

regime of radio measurements in the bandwidth we use has a distinguishing feature: the
detection efficiency for arrival directions near the geomagnetic field is suppressed. This makes
straightforward calculations of the instrumental full-efficiency angular coverage impossible.

Recently we developed a model taking into account this feature. This model uses elliptical
shower footprints for calculation of detection efficiency for a given area and incoming direction.
Parametrization of the ellipse parameters in this model is obtained from our experimental data.

This simple model, however, does not describe the observed detection efficiency in required
detail. It works sufficiently well only in the intermediate range of zenith angles. Comparisons of
the model against the hybrid observations with TAIGA detectors as well as detailed description
of the model can be found in [14].

Calculations of aperture can be done with high precision by utilizing an analytical approach.
Since the main problem in the analytical calculation of the angular part of the aperture is

the suppression around the magnetic field direction we can introduce a simple cut around this
region. An additional cut for low zenith angles is introduced due to the low number of triggered
antennas in this region.

Utilizing the considered cuts one obtains:

AΩ(E) = 2

ϑmax∫
ϑmin(E)

[
π − arccos

(
cosαmin (E)− cosϑ cosϑm

sinϑ sinϑm

)]
cosϑ sinϑ dϑ. (5)

In this equation ϑmax is the maximal zenith angle, ϑmin — minimal zenith angle, αmin —
minimal geomagnetic angle required (recall that geomagnetic angle is the angle between the
arrival direction and the geomagnetic field), ϑM — zenith angle of geomagnetic field. These
cuts are applied in the fiducial selection of the events. The integral is solved numerically.

Details of the derivation this formula can be found in the appendix.
The presented method allows calculation of the experimental aperture semi-analytically

taking advantage of energy dependent cuts. The choice of cut parametrization for the particular
mode is under investigation as well as overall performance of the method.

4. Conclusion
Tunka-Rex has been operating and successfully measuring cosmic rays since 2012. Reliable
reconstruction methods and instrument calibration were developed during the last years. The
main results of the Tunka-Rex can be summarized as following:

• Development of a robust reconstruction method for data containing only a few antennas
with signals [7, 15].

• Experimental determination of the energy (10%) and Xmax (30 g/cm2) precision by
comparing radio and air-Cherenkov measurements of the same events [16].

• Comparing the energy scales of the Tunka-133 and KASCADE-Grande instruments with
its radio extensions [17].

• Development of an aperture and exposure model [14] and utilizing this model for the
reconstruction of the mean shower maximum as function of energy [7].
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Appendix A. Details on Equation 5
The idea of the derivation of equation 5 can be illustrated with Fig. A1. First, we perform the
integration of the cosine over area I, and then exclude the integral over area II. The coordinate
system is chosen for simplification in a way that the azimuthal angle of the center of area II is
zero.

Figure A1. Cuts and areas used in the
calculations (azimuthal equidistant projection of
the sky). The integral is over the gray area.

Let us begin with the integral for area I. It is useful to recall that cosine in the initial integral
holds information that the detector is flat.

(I) =

∫
Ω′

cosϑ dΩ =

2π∫
0

ϑmax∫
ϑmin

cosϑ sinϑ dϑ dϕ = 2π

ϑmax∫
ϑmin

cosϑ sinϑ dϑ. (A.1)

This equation can be integrated further

(I) = π
[
cos2 ϑmin − cos2 ϑmax

]
. (A.2)

This is the standard equation for the calculation of the aperture in the case of full efficiency and
absence of any azimuth-dependent cuts. If ϑmin = 0 then (I) = π

[
1− cos2 ϑmax

]
.

For the area II we begin with the same equation and exploiting the symmetry for the
integration:

(II) =

∫
Ω′

cosϑ dΩ = 2

∫
Ω̃

cosϑ dΩ = 2

ϑmax∫
ϑmin

f(ϑ)∫
0

cosϑ sinϑ dϕdϑ. (A.3)

As upper limit of the integral over ϕ we use dependency of ϕ on ϑ on the circle of radius αmin
around the direction to the local magnetic field (ϑM , ϕ). We use equation for circle on spherical



surface adopted from [19]

cosαmin = cosϑ cosϑM + sinϑ sinϑM cosϕ. (A.4)

Hence it is easy to express the required dependency

ϕ = arccos

(
cosαmin − cosϑ cosϑM

sinϑ sinϑM

)
. (A.5)

Using this equation as the upper limit in A.3 the integral is

(II) = 2

ϑ′max∫
ϑmin

arccos

(
cosαmin − cosϑ cosϑM

sinϑ sinϑM

)
cosϑ sinϑdϑ. (A.6)

Here ϑ′max is the maximal zenith angle of area II.
The final step is to perform the subtraction

(I)− (II) = π
[
cos2 ϑmin − cos2 ϑmax

]
− 2

ϑ′max∫
ϑmin

arccos

(
cosαmin − cosϑ cosϑM

sinϑ sinϑM

)
cosϑ sinϑdϑ.

(A.7)
This form is convenient for practical calculations. However, it can be can be expressed in the
following shorter form

(I)− (II) = 2

ϑmax∫
ϑmin

[
π − arccos

(
cosαmin − cosϑ cosϑM

sinϑ sinϑM

)]
cosϑ sinϑ dϑ. (A.8)
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